Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656671

RESUMO

Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms and exacerbate the condition of basic diseases with long COVID-19 syndrome. However, the molecular mechanisms underlying severe COVID-19 in the elderly patients remain unclear. Our study aims to investigate the function of the interaction between disease-characteristic genes and immune cell infiltration in patients with severe COVID-19 infection. COVID-19 datasets (GSE164805 and GSE180594) and aging dataset (GSE69832) were obtained from the Gene Expression Omnibus database. The combined different expression genes (DEGs) were subjected to Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Diseases Ontology functional enrichment analysis, Gene Set Enrichment Analysis, machine learning, and immune cell infiltration analysis. GO and KEGG enrichment analyses revealed that the eight DEGs (IL23A, PTGER4, PLCB1, IL1B, CXCR1, C1QB, MX2, ALOX12) were mainly involved in inflammatory mediator regulation of TRP channels, coronavirus disease-COVID-19, and cytokine activity signaling pathways. Three-degree algorithm (LASSO, SVM-RFE, KNN) and correlation analysis showed that the five DEGs up-regulated the immune cells of macrophages M0/M1, memory B cells, gamma delta T cell, dendritic cell resting, and master cell resisting. Our study identified five hallmark genes that can serve as disease-characteristic genes and target immune cells infiltrated in severe COVID-19 patients among the elderly population, which may contribute to the study of pathogenesis and the evaluation of diagnosis and prognosis in aging patients infected with severe COVID-19.

2.
Angew Chem Int Ed Engl ; 62(52): e202316336, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966337

RESUMO

The achievement of significant photoluminescence (PL) in lanthanide ions (Ln3+ ) has primarily relied on host sensitization, where energy is transferred from the excited host material to the Ln3+ ions. However, this luminous mechanism involves only one optical antenna, namely the host material, which limits the accessibility of excitation wavelength-dependent (Ex-De) PL. Consequently, the wider application of Ln3+ ions in light-emitting devices is hindered. In this study, we present an organic-inorganic compound, (DMA)4 LnCl7 (DMA+ =[CH3 NH2 CH3 ]+ , Ln3+ =Ce3+ , Tb3+ ), which serves as an independent host lattice material for efficient Ex-De emission by doping it with trivalent antimony (Sb3+ ). The pristine (DMA)4 LnCl7 compounds exhibit high luminescence, maintaining the characteristic sharp emission bands of Ln3+ and demonstrating a high PL quantum yield of 90-100 %. Upon Sb3+ doping, the compound exhibits noticeable Ex-De emission with switchable colors. Through a detailed spectral study, we observe that the prominent energy transfer process observed in traditional host-sensitized systems is absent in these materials. Instead, they exhibit two independent emission centers from Ln3+ and Sb3+ , each displaying distinct features in luminous color and radiative lifetime. These findings open up new possibilities for designing Ex-De emitters based on Ln3+ ions.

3.
Nanoscale ; 15(22): 9691-9699, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37092258

RESUMO

Methyl acetate (MeOAc) is the most used antisolvent in the preparation of perovskite quantum dot (QD) films. However, the hydrolysis of MeOAc results in acetic acid and methanol (MeOH), and the decomposition of the perovskite occurs more easily under acidic and polar conditions. Herein, we report a facile and universal anion modification strategy to inhibit MeOH absorption on a perovskite QD surface and improve the photovoltaic performance of perovskite QD solar cells, which is implemented by incorporating a series of guanidinium salts containing different anions (guanidinium bromide (GuaBr), guanidinium thiocyanate (GuaSCN), and guanidinium acetate (GuaAc)). All anions play a positive role in inhibiting the absorption of MeOH on the QD surface, facilitating charge transfer between perovskite QDs and passivating the defects. Moreover, the regulation of surface chemistry can be optimized by rational tailoring of different anion species. The GuaAc-based devices deliver a PCE of 7.04%, which is the highest value among inorganic CsPbBr3 QD solar cells. More importantly, the CsPbBr3 QD solar cells exhibit high transparency over the entire visible spectrum region, indicating their promising application in solar windows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA